
crystallization communications

Acta Cryst. (2009). F65, 267–270 doi:10.1107/S1744309109002504 267

Acta Crystallographica Section F

Structural Biology
and Crystallization
Communications

ISSN 1744-3091

Crystallization and preliminary X-ray
crystallographic studies of the Z-DNA-binding
domain of a PKR-like kinase (PKZ) in complex with
Z-DNA

Doyoun Kim,a Hye-Yeon

Hwang,a Yang-Gyun Kimb and

Kyeong Kyu Kima*

aDepartment of Molecular Cell Biology,

Samsung Biomedical Research Institute,

Sungkyunkwan University School of Medicine,

Suwon 440-746, Republic of Korea, and
bDepartment of Chemistry, Sungkyunkwan

University, Suwon 440-746, Republic of Korea

Correspondence e-mail: kkim@med.skku.ac.kr

Received 3 November 2008

Accepted 20 January 2009

PKZ, a PKR-like eIF2� kinase, consists of a Z-DNA-specific binding domain

(Z�) and an eIF2� kinase domain. The kinase activity of PKZ is modulated by

the binding of Z� to Z-DNA. The mechanisms underlying Z-DNA binding and

the subsequent stimulation of PKZ raise intriguing questions. Interestingly, the

Z-DNA-binding domain of PKZ from goldfish (Carassius auratus; caZ�PKZ)

shows limited sequence homology to other canonical Z� domains, suggesting

that it may have a distinct Z-DNA-recognition mode. In this study, the Z-DNA-

binding activity and stoichiometry of caZ�PKZ were confirmed using circular

dichroism (CD). In addition, preliminary X-ray studies of the caZ�PKZ–Z-DNA

complex are reported as the first step in the determination of its three-

dimensional structure. Bacterially expressed recombinant caZ�PKZ was purified

and crystallized with Z-DNA at 295 K using the microbatch method. X-ray

diffraction data were collected to 1.7 Å resolution with an Rmerge of 7.4%. The

crystals belonged to the monoclinic space group C2, with unit-cell parameters

a = 55.54, b = 49.93, c = 29.44 Å, � = 96.5�. Structural analysis of caZ�PKZ–

Z-DNA will reveal the binding mode of caZ�PKZ to Z-DNA and its relevance to

other Z-DNA-binding proteins.

1. Introduction

The downregulation of protein synthesis via phosphorylation of the �
subunit of eukaryotic translation initiation factor 2 (eIF2�) is a well

established antiviral and antiproliferation mechanism (Proud, 2005).

Double-stranded RNA (dsRNA) dependent protein kinase (PKR) is

one of four kinases which mediate this phosphorylation in humans

(Garcia et al., 2007). PKR, as well as other known eIF2� kinases, is

composed of a conserved kinase domain at the C-terminus and a

regulatory domain at the N-terminus. The latter plays a role in the

recognition of various environmental signals and the activation of the

kinase domain. The phosphorylation activity of PKR is stimulated

when it is bound to double-stranded RNA through the RNA-binding

domain. Recently, interferon-inducible PKR-like kinases (PKZs)

have been identified in fish species (Hu et al., 2004; Rothenburg et al.,

2005; Su et al., 2008). The kinase domain of PKZ is highly homo-

logous to that of PKR and it shares common substrates with PKR

(Bergan et al., 2008). However, PKZ contains two Z-DNA-binding

domains in its N-terminus instead of the dsRNA-binding domain

(dsRBD) of PKR and accordingly modulation of its kinase activity is

dependent on Z-DNA binding (Bergan et al., 2008). Left-handed

Z-DNA is a higher energy conformation of DNA which is generated

as a consequence of negative supercoiling (Liu & Wang, 1987; Her-

bert & Rich, 1999). It has also been reported that the formation of

Z-DNA owing to frequent mutations is associated with various

genetic diseases (Wang et al., 2006). Z� domains, which have been

identified in dsRNA-editing enzyme ADAR1 (Herbert & Rich,

2001), DNA-dependent activator of interferon regulatory factors

DAI (Schwartz et al., 2001; Takaoka et al., 2007) and poxvirus viru-

lence factor E3L (Kim et al., 2003), specifically bind to double-

stranded nucleotides in left-handed conformations (Rich & Zhang,

2003).
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The crystal structures of Z� domains in complex with Z-DNA have

been reported for Z�ADAR1 (Schwartz et al., 1999), Z�DAI (Schwartz

et al., 2001) and Z�E3L (Ha et al., 2004) and they revealed a common

typical winged-helix motif. The recognition of Z-DNA is mediated by

the recognition of phosphate backbones in zigzag conformation and

the syn conformation of guanine. The residues present in the �3 helix

and the �-wing region play important roles in Z-DNA recognition as

they are involved in direct contacts with phosphate backbones as well

as in water-mediated interactions (Schwartz et al., 1999). Further-

more, structural analyses and mutational biochemical studies confirm

that minor variations in the sequence of the �-wing region can alter

the van der Waals interactions (Schwartz et al., 2001) and Z-DNA

stabilization (Quyen et al., 2007). It was found that the Z� domain of

PKZ from goldfish (Carassius auratus; caZ�PKZ) shares limited

sequence homology to other canonical Z-DNA-binding domains.

26% identity is observed between caZ�PKZ and hZ�ADAR1 when 75

residues are compared. Interestingly, the Lys170 residue which plays

a critical role in Z-DNA recognition is not present in caZ�PKZ. Thus,

very intriguing questions arise of how caZ�PKZ recognizes Z-DNA

and consequently how Z-DNA binding modulates the kinase activity

of PKZ. Structural study of caZ�PKZ is required to address these

questions and here we present a preliminary crystallographic analysis

of caZ�PKZ in complex with Z-DNA as the first step in the deter-

mination of its three-dimensional structure.

2. Materials and methods

2.1. Cloning, expression and purification

The coding sequence of the Z� domain (residues 1–75) of PKZ

from C. auratus was cloned into pET28a+ (Novagen, Madison,

Wisconsin, USA). As a result, an extra six histidine residues were

attached to the N-terminus of caZ�PKZ and were subsequently

removed during purification. Escherichia coli BL21(DE3) cells

(Novagen, Madison, Wisconsin, USA) transformed with this recom-

binant plasmid were grown in Luria–Bertani medium containing

30 mg ml�1 kanamycin at 310 K and 0.1 mM isopropyl �-d-1-thio-

galactoside (IPTG) was added when the OD600 reached 0.6. The cells

were harvested after 3 h and caZ�PKZ was purified essentially as

described elsewhere (Schwartz et al., 1999). Briefly, after initial

chromatography on a HiTrap metal-chelating column (GE Health-

care, Princeton, New Jersey, USA), thrombin was added to remove

the hexahistidine tag and caZ�PKZ was further purified using a

Resource S ion-exchange column (GE Healthcare, Princeton, New

Jersey, USA). The purified caZ�PKZ was dialyzed against buffer A

(5 mM HEPES pH 7.5 and 10 mM NaCl) and concentrated to 1 mM.

The protein concentration was determined using the Bradford

method.

2.2. Preparation of the double-stranded DNA

The double-stranded DNA (dsDNA) was obtained by heating the

single-strand oligomer d(TCGCGCG) (Bioneer, Daejeon, Korea) in

buffer A for 10 min at 353 K followed by gradual cooling to 277 K.

dsDNA was then isolated by MonoQ ion-exchange column chroma-

tography (GE Healthcare, Princeton, New Jersey), dialyzed against

distilled water and lyophilized for storage and crystallization. The

DNA concentration was calculated by UV spectroscopy.
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Figure 1
The B-DNA to Z-DNA conversion activity of caZ�PKZ measured by circular
dichroism (CD). caZ�PKZ was added to d(TCGCGCG)2 at the indicated molar
ratios of 1:1, 2:1 and 4:1 and incubated for 1 h prior to the CD measurement. In the
absence of caZ�PKZ, the B-DNA spectrum was observed. The conformational
change to Z-DNA was monitored by CD spectra between 240 and 310 nm.

Figure 2
Crystals of the caZ�PKZ–d(TCGCGCG)2 complex. (a) Crystals obtained in the initial screening. (b) Diffraction-quality crystals obtained using the optimized crystallization
conditions. The approximate dimensions of the optimized crystals are 0.1 � 0.1 � 0.5 mm.



2.3. Z-DNA conversion assay

The Z-DNA conversion activity of caZ�PKZ was measured by

circular dichroism (CD) using 30 mM d(TCGCGCG)2 in buffer A. CD

spectra were obtained at 298 K using a Jasco J-810 CD spectrometer

(Jasco, Tokyo, Japan) and a 0.1 cm quartz cell. The volume of the

concentrated caZ�PKZ stock solution added to each reaction did not

exceed 5% of the total volume. The mixture was equilibrated for 1 h

prior to measurement. Spectra were recorded between 240 and

310 nm at 1 nm intervals averaged over 2 s.

2.4. Crystallization

Purified caZ�PKZ protein (0.6 mM) was mixed with dsDNA in a 1:2

molar ratio in buffer A and incubated at 303 K for 2 h. Initial crys-

tallization screening was performed manually at 295 K by the

microbatch method using Crystal Screens I and II (Hampton

Research, Aliso Viejo, California, USA) and Cryo I and II kits

(Emerald Biosystems, Bainbridge Island, Washington, USA). Each

drop consisting of 1 ml screen solution and 1 ml protein–DNA mixture

was covered with 10 ml Al’s Oil (Hampton Research, Aliso Viejo,

California) in Nunclon � Surface wells (Nunc, Rochester, New York,

USA). In order to optimize the initial crystallization conditions, a

number of parameters were varied.

2.5. Data collection

Complete diffraction data were collected using a MAR CCD

165 mm detector on the BL4A beamline of the Pohang Accelerator

Laboratory Synchrotron (Pohang, Korea) from a crystal that was

flash-cooled in a cold nitrogen-gas stream at 100 K. Prior to data

collection, the crystal was immersed for more than 30 s in mother

liquor (30% PEG 1500, 15 mM MnCl2) containing 25%(v/v) glycerol

as a cryoprotectant. The wavelength of the synchrotron radiation was

1.000 Å. The diffraction data were processed and scaled using HKL-

2000 (Otwinowski & Minor, 1997).

3. Results and discussion

Z�PKZ from goldfish was expressed in E. coli and purified for struc-

tural studies. Approximately 10 mg of homogenous protein was ob-

tained per litre of culture. The CD spectrum of the caZ�PKZ–

d(TCGCGCG)2 mixture indicated a typical Z conformation of the

DNA, which confirmed that caZ�PKZ is able to convert d(TCG-

CGCG)2 to the Z conformation. The CD spectra showing the Z-DNA

conformation were virtually the same when caZ�PKZ was added to

DNA in a twofold or fourfold molar excess, suggesting that the

formation of Z-DNA in the mixture was saturated at a caZ�PKZ:

d(TCGCGCG)2 ratio of 2:1 (Fig. 1). This finding is consistent with

previous structure studies (Schwartz et al., 1999, 2001; Ha et al., 2004)

showing that a Z-DNA-binding protein binds to each strand of

d(TCGCGCG)2 in the Z conformation.

In the initial crystallization screen, clusters of needle-shaped

crystals of the caZ�PKZ–Z-DNA complex were obtained using con-

dition No. 43 (30% PEG1500) from Crystal Screen I (Hampton

Research, Aliso Viejo, USA; Fig. 2a). However, the shape and size of

these crystals were not suitable for X-ray diffraction experiments.

The addition of MnCl2 resulted in a change in crystal shape from

clusters of needles to tetragonal columns (Fig. 2b) and diffraction-

quality crystals were finally observed using 30% PEG 1500 and

15 mM MnCl2 at 295 K. The crystals grew to final dimensions of

0.1 � 0.1 � 0.5 mm within 2 d (Fig. 2b). The presence of DNA in the

crystal was confirmed by EtBr staining of the dissolved crystals on

0.8% agarose gel (Fig. 3).

X-ray diffraction data were collected from a cryoprotected crystal

to 96.5% completeness at 1.7 Å resolution with an Rmerge of 7.4%.

The crystal belonged to the monoclinic space group C2, with unit-cell

parameters a = 55.54, b = 49.93, c = 29.44 Å, � = 96.5�. Assuming the

presence of one caZ�PKZ molecule and one single-stranded DNA

molecule per asymmetric unit, the Matthews coefficient VM was

calculated to be 2.01 Å3 Da�1, which corresponds to 45.4% solvent

content. This VM value is within the range commonly observed for

protein crystals (Matthews, 1968). The data-collection and processing

statistics are summarized in Table 1. We intend to solve the structure

of caZ�PKZ complexed with dsDNA by molecular replacement using

the Z� domain of human ADAR1 bound to d(TCGCGCG)2 (PDB

code 1qbj) as a template model.
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Figure 3
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Table 1
X-ray data-collection and processing statistics.
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hI/�(I)i 35.9 (7.3)

† Rmerge =
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ.
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